Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Predicting leaf wax n-alkane 2H/1H ratios: controlled water source and humidity experiments with hydroponically grown trees confirm predictions of Craig-Gordon model.

Identifieur interne : 001B83 ( Main/Exploration ); précédent : 001B82; suivant : 001B84

Predicting leaf wax n-alkane 2H/1H ratios: controlled water source and humidity experiments with hydroponically grown trees confirm predictions of Craig-Gordon model.

Auteurs : Brett J. Tipple [États-Unis] ; Melissa A. Berke ; Bastian Hambach ; John S. Roden ; James R. Ehleringer

Source :

RBID : pubmed:25266328

Descripteurs français

English descriptors

Abstract

The extent to which both water source and atmospheric humidity affect δ(2)H values of terrestrial plant leaf waxes will affect the interpretations of δ(2)H variation of leaf waxes as a proxy for hydrological conditions. To elucidate the effects of these parameters, we conducted a long-term experiment in which we grew two tree species, Populus fremontii and Betula occidentalis, hydroponically under combinations of six isotopically distinct waters and two different atmospheric humidities. We observed that leaf n-alkane δ(2)H values of both species were linearly related to source water δ(2)H values, but with slope differences associated with differing humidities. When a modified version of the Craig-Gordon model incorporating plant factors was used to predict the δ(2)H values of leaf water, all modelled leaf water values fit the same linear relationship with n-alkane δ(2)H values. These observations suggested a relatively constant biosynthetic fractionation factor between leaf water and n-alkanes. However, our calculations indicated a small difference in the biosynthetic fractionation factor between the two species, consistent with small differences calculated for species in other studies. At present, it remains unclear if these apparent interspecies differences in biosynthetic fractionation reflect species-specific biochemistry or a common biosynthetic fractionation factor with insufficient model parameterization.

DOI: 10.1111/pce.12457
PubMed: 25266328


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Predicting leaf wax n-alkane 2H/1H ratios: controlled water source and humidity experiments with hydroponically grown trees confirm predictions of Craig-Gordon model.</title>
<author>
<name sortKey="Tipple, Brett J" sort="Tipple, Brett J" uniqKey="Tipple B" first="Brett J" last="Tipple">Brett J. Tipple</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, University of Utah, Salt Lake City, UT, 84112, USA; Global Change and Sustainability Center, University of Utah, Salt Lake City, UT, 84112, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, University of Utah, Salt Lake City, UT, 84112, USA; Global Change and Sustainability Center, University of Utah, Salt Lake City, UT, 84112</wicri:regionArea>
<wicri:noRegion>84112</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Berke, Melissa A" sort="Berke, Melissa A" uniqKey="Berke M" first="Melissa A" last="Berke">Melissa A. Berke</name>
</author>
<author>
<name sortKey="Hambach, Bastian" sort="Hambach, Bastian" uniqKey="Hambach B" first="Bastian" last="Hambach">Bastian Hambach</name>
</author>
<author>
<name sortKey="Roden, John S" sort="Roden, John S" uniqKey="Roden J" first="John S" last="Roden">John S. Roden</name>
</author>
<author>
<name sortKey="Ehleringer, James R" sort="Ehleringer, James R" uniqKey="Ehleringer J" first="James R" last="Ehleringer">James R. Ehleringer</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:25266328</idno>
<idno type="pmid">25266328</idno>
<idno type="doi">10.1111/pce.12457</idno>
<idno type="wicri:Area/Main/Corpus">001F85</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001F85</idno>
<idno type="wicri:Area/Main/Curation">001F85</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001F85</idno>
<idno type="wicri:Area/Main/Exploration">001F85</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Predicting leaf wax n-alkane 2H/1H ratios: controlled water source and humidity experiments with hydroponically grown trees confirm predictions of Craig-Gordon model.</title>
<author>
<name sortKey="Tipple, Brett J" sort="Tipple, Brett J" uniqKey="Tipple B" first="Brett J" last="Tipple">Brett J. Tipple</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, University of Utah, Salt Lake City, UT, 84112, USA; Global Change and Sustainability Center, University of Utah, Salt Lake City, UT, 84112, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, University of Utah, Salt Lake City, UT, 84112, USA; Global Change and Sustainability Center, University of Utah, Salt Lake City, UT, 84112</wicri:regionArea>
<wicri:noRegion>84112</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Berke, Melissa A" sort="Berke, Melissa A" uniqKey="Berke M" first="Melissa A" last="Berke">Melissa A. Berke</name>
</author>
<author>
<name sortKey="Hambach, Bastian" sort="Hambach, Bastian" uniqKey="Hambach B" first="Bastian" last="Hambach">Bastian Hambach</name>
</author>
<author>
<name sortKey="Roden, John S" sort="Roden, John S" uniqKey="Roden J" first="John S" last="Roden">John S. Roden</name>
</author>
<author>
<name sortKey="Ehleringer, James R" sort="Ehleringer, James R" uniqKey="Ehleringer J" first="James R" last="Ehleringer">James R. Ehleringer</name>
</author>
</analytic>
<series>
<title level="j">Plant, cell & environment</title>
<idno type="eISSN">1365-3040</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Alkanes (analysis)</term>
<term>Betula (growth & development)</term>
<term>Betula (metabolism)</term>
<term>Deuterium (metabolism)</term>
<term>Humidity (MeSH)</term>
<term>Hydrogen (metabolism)</term>
<term>Hydroponics (MeSH)</term>
<term>Plant Leaves (chemistry)</term>
<term>Plant Leaves (metabolism)</term>
<term>Populus (growth & development)</term>
<term>Populus (metabolism)</term>
<term>Trees (growth & development)</term>
<term>Trees (metabolism)</term>
<term>Water (metabolism)</term>
<term>Waxes (chemistry)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Alcanes (analyse)</term>
<term>Arbres (croissance et développement)</term>
<term>Arbres (métabolisme)</term>
<term>Betula (croissance et développement)</term>
<term>Betula (métabolisme)</term>
<term>Cires (composition chimique)</term>
<term>Culture hydroponique (MeSH)</term>
<term>Deutérium (métabolisme)</term>
<term>Eau (métabolisme)</term>
<term>Feuilles de plante (composition chimique)</term>
<term>Feuilles de plante (métabolisme)</term>
<term>Humidité (MeSH)</term>
<term>Hydrogène (métabolisme)</term>
<term>Populus (croissance et développement)</term>
<term>Populus (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Alkanes</term>
</keywords>
<keywords scheme="MESH" qualifier="analyse" xml:lang="fr">
<term>Alcanes</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Plant Leaves</term>
<term>Waxes</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Cires</term>
<term>Feuilles de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Arbres</term>
<term>Betula</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Betula</term>
<term>Populus</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Betula</term>
<term>Deuterium</term>
<term>Hydrogen</term>
<term>Plant Leaves</term>
<term>Populus</term>
<term>Trees</term>
<term>Water</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Arbres</term>
<term>Betula</term>
<term>Deutérium</term>
<term>Eau</term>
<term>Feuilles de plante</term>
<term>Hydrogène</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Humidity</term>
<term>Hydroponics</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Culture hydroponique</term>
<term>Humidité</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The extent to which both water source and atmospheric humidity affect δ(2)H values of terrestrial plant leaf waxes will affect the interpretations of δ(2)H variation of leaf waxes as a proxy for hydrological conditions. To elucidate the effects of these parameters, we conducted a long-term experiment in which we grew two tree species, Populus fremontii and Betula occidentalis, hydroponically under combinations of six isotopically distinct waters and two different atmospheric humidities. We observed that leaf n-alkane δ(2)H values of both species were linearly related to source water δ(2)H values, but with slope differences associated with differing humidities. When a modified version of the Craig-Gordon model incorporating plant factors was used to predict the δ(2)H values of leaf water, all modelled leaf water values fit the same linear relationship with n-alkane δ(2)H values. These observations suggested a relatively constant biosynthetic fractionation factor between leaf water and n-alkanes. However, our calculations indicated a small difference in the biosynthetic fractionation factor between the two species, consistent with small differences calculated for species in other studies. At present, it remains unclear if these apparent interspecies differences in biosynthetic fractionation reflect species-specific biochemistry or a common biosynthetic fractionation factor with insufficient model parameterization.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25266328</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>04</Month>
<Day>08</Day>
</DateCompleted>
<DateRevised>
<Year>2015</Year>
<Month>05</Month>
<Day>05</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1365-3040</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>38</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2015</Year>
<Month>Jun</Month>
</PubDate>
</JournalIssue>
<Title>Plant, cell & environment</Title>
<ISOAbbreviation>Plant Cell Environ</ISOAbbreviation>
</Journal>
<ArticleTitle>Predicting leaf wax n-alkane 2H/1H ratios: controlled water source and humidity experiments with hydroponically grown trees confirm predictions of Craig-Gordon model.</ArticleTitle>
<Pagination>
<MedlinePgn>1035-47</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/pce.12457</ELocationID>
<Abstract>
<AbstractText>The extent to which both water source and atmospheric humidity affect δ(2)H values of terrestrial plant leaf waxes will affect the interpretations of δ(2)H variation of leaf waxes as a proxy for hydrological conditions. To elucidate the effects of these parameters, we conducted a long-term experiment in which we grew two tree species, Populus fremontii and Betula occidentalis, hydroponically under combinations of six isotopically distinct waters and two different atmospheric humidities. We observed that leaf n-alkane δ(2)H values of both species were linearly related to source water δ(2)H values, but with slope differences associated with differing humidities. When a modified version of the Craig-Gordon model incorporating plant factors was used to predict the δ(2)H values of leaf water, all modelled leaf water values fit the same linear relationship with n-alkane δ(2)H values. These observations suggested a relatively constant biosynthetic fractionation factor between leaf water and n-alkanes. However, our calculations indicated a small difference in the biosynthetic fractionation factor between the two species, consistent with small differences calculated for species in other studies. At present, it remains unclear if these apparent interspecies differences in biosynthetic fractionation reflect species-specific biochemistry or a common biosynthetic fractionation factor with insufficient model parameterization.</AbstractText>
<CopyrightInformation>© 2014 John Wiley & Sons Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Tipple</LastName>
<ForeName>Brett J</ForeName>
<Initials>BJ</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, University of Utah, Salt Lake City, UT, 84112, USA; Global Change and Sustainability Center, University of Utah, Salt Lake City, UT, 84112, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Berke</LastName>
<ForeName>Melissa A</ForeName>
<Initials>MA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hambach</LastName>
<ForeName>Bastian</ForeName>
<Initials>B</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Roden</LastName>
<ForeName>John S</ForeName>
<Initials>JS</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ehleringer</LastName>
<ForeName>James R</ForeName>
<Initials>JR</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>11</Month>
<Day>11</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Cell Environ</MedlineTA>
<NlmUniqueID>9309004</NlmUniqueID>
<ISSNLinking>0140-7791</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000473">Alkanes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014885">Waxes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>059QF0KO0R</RegistryNumber>
<NameOfSubstance UI="D014867">Water</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>7YNJ3PO35Z</RegistryNumber>
<NameOfSubstance UI="D006859">Hydrogen</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>AR09D82C7G</RegistryNumber>
<NameOfSubstance UI="D003903">Deuterium</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000473" MajorTopicYN="N">Alkanes</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="Y">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029662" MajorTopicYN="N">Betula</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003903" MajorTopicYN="N">Deuterium</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006813" MajorTopicYN="N">Humidity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006859" MajorTopicYN="N">Hydrogen</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018527" MajorTopicYN="Y">Hydroponics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="N">Trees</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014867" MajorTopicYN="N">Water</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014885" MajorTopicYN="N">Waxes</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">compound-specific isotope analysis</Keyword>
<Keyword MajorTopicYN="N">hydrogen isotopes</Keyword>
<Keyword MajorTopicYN="N">stable isotopes</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>10</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2014</Year>
<Month>09</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>09</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>10</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>10</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>4</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25266328</ArticleId>
<ArticleId IdType="doi">10.1111/pce.12457</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Berke, Melissa A" sort="Berke, Melissa A" uniqKey="Berke M" first="Melissa A" last="Berke">Melissa A. Berke</name>
<name sortKey="Ehleringer, James R" sort="Ehleringer, James R" uniqKey="Ehleringer J" first="James R" last="Ehleringer">James R. Ehleringer</name>
<name sortKey="Hambach, Bastian" sort="Hambach, Bastian" uniqKey="Hambach B" first="Bastian" last="Hambach">Bastian Hambach</name>
<name sortKey="Roden, John S" sort="Roden, John S" uniqKey="Roden J" first="John S" last="Roden">John S. Roden</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Tipple, Brett J" sort="Tipple, Brett J" uniqKey="Tipple B" first="Brett J" last="Tipple">Brett J. Tipple</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001B83 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001B83 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25266328
   |texte=   Predicting leaf wax n-alkane 2H/1H ratios: controlled water source and humidity experiments with hydroponically grown trees confirm predictions of Craig-Gordon model.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25266328" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020